MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage
نویسندگان
چکیده
The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal-organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm(3) (STP)/cm(3) (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions.
منابع مشابه
In-situ observation for growth of hierarchical metal-organic frameworks and their self-sequestering mechanism for gas storage
Although structures with the single functional constructions and micropores were demonstrated to capture many different molecules such as carbon dioxide, methane, and hydrogen with high capacities at low temperatures, their feeble interactions still limit practical applications at room temperature. Herein, we report in-situ growth observation of hierarchical pores in pomegranate metal-organic f...
متن کاملWhy Porous Materials Have Selective Adsorptions: A Rational Aspect from Electrodynamics.
Gas storage/separation is a typical application of porous materials such as metal organic frameworks (MOFs). The adsorption/separation behavior results from the host-guest and/or guest-guest interaction and equilibration (host, porous material; guest, adsorbates). Although the driving forces for gas adsorption have been investigated, a detailed picture of interactions between gas molecules and ...
متن کاملMWCNT@MIL-53 (Cr) Nanoporous Composite: Synthesis, Characterization, and Methane Storage Property
In this paper, porous metal−organic frameworks (MIL-53 [CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x]) were hydrothermally synthesized and, then, a hybrid composite of these synthesized porous metal−organic frameworks (MOF) with acid-treated multi-walled carbon nanotubes (MWCNTs) was prepared. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunau...
متن کاملHigh Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links.
High methane storage capacity in porous materials is important for the design and manufacture of vehicles powered by natural gas. Here, we report the synthesis, crystal structures and methane adsorption properties of five new zinc metal-organic frameworks (MOFs), MOF-905, MOF-905-Me2, MOF-905-Naph, MOF-905-NO2, and MOF-950. All these MOFs consist of the Zn4O(-CO2)6 secondary building units (SBU...
متن کاملStepwise Synthesis of Mesoporous Carbon Nitride Functionalized by Melamine Based Dendrimer Amines for Adsorption of CO2 and CH4
In this study, a novel solid dendrimer amine (hyperbranched polymers) was prepared using mesoporous carbon nitride functionalized by melamine based dendrimer amines. This adsorbent was denoted MDA-MCN-1. The process was stepwise synthesis and hard-templating method using mesoporous silica SBA-15 as a template. Cyanuric chloride and N,N-diisopropylethylamine (DIPEA, Merck) were used for function...
متن کامل